

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

cacophony

[image: _images/cacophony.svg]Build Status [https://travis-ci.org/centromere/cacophony]
[image: _images/language-haskell-blue.png]Haskell [http://www.haskell.org]

This library implements the Noise [https://noiseprotocol.org] protocol.

Basic Usage

	Import the modules for the kind of handshake you’d like to use.

For example, if you want to use Noise_IK_25519_AESGCM_SHA256, your imports would be:

import Crypto.Noise
import Crypto.Noise.Cipher.AESGCM
import Crypto.Noise.DH -- Used to generate and manipulate keys
import Crypto.Noise.DH.Curve25519
import Crypto.Noise.Hash.SHA256
import Crypto.Noise.HandshakePatterns (noiseIK)

	Set the handshake parameters.

Ensure that you provide the keys which are required by the handshake pattern you choose. For example,
the Noise_IK pattern requires that the initiator provides a local static key and a remote static key,
while the responder is only responsible for a local static key. You can use defaultHandshakeOpts to
return a default set of options in which all keys are set to Nothing. The initiator must set a
local ephemeral key for all handshake patterns. The responder must set a local ephemeral key for all
interactive (i.e. not one-way) patterns.

-- Initiator
localEphemeralKey <- dhGenKey :: IO (KeyPair Curve25519)

let dho = defaultHandshakeOpts InitiatorRole "prologue" :: HandshakeOpts Curve25519
 iho = setLocalStatic (Just localStaticKey)
 . setLocalEphemeral (Just localEphemeralKey)
 . setRemoteStatic (Just remoteStaticKey) -- communicated out-of-band
 $ dho

-- Responder
localEphemeralKey <- dhGenKey :: IO (KeyPair Curve25519)

let dho = defaultHandshakeOpts ResponderRole "prologue" :: HandshakeOpts Curve25519
 rho = setLocalStatic (Just localStaticKey)
 . setLocalEphemeral (Just localEphemeralKey)
 $ dho

	Create the Noise state.

-- Initiator
let ins = noiseState iho noiseIK :: NoiseState AESGCM Curve25519 SHA256

-- Responder
let rns = noiseState rho noiseIK :: NoiseState AESGCM Curve25519 SHA256

	Send and receive messages.

-- Initiator
let writeResult = writeMessage "They must find it difficult -- those who have taken authority as the truth, rather than truth as the authority." ins
case writeResult of
 NoiseResultMessage ciphertext ins' -> ...
 NoiseResultNeedPSK _ -> error "something terrible happened" -- will never happen in Noise_IK
 NoiseResultException _ -> error "something terrible happened"

-- Responder
let readResult = readMessage ciphertext rns
case readResult of
 NoiseResultMessage plaintext rns' -> ...
 NoiseResultNeedPSK _ -> error "something terrible happened"
 NoiseResultException _ -> error "something terrible happened"

Ensure that you never re-use a NoiseState to send more than one message.

Decrypted messages are stored internally as ScrubbedBytes and will be wiped from memory when they are
destroyed.

Helper Functions

The following functions are found in Crypto.Noise.DH and are used to manipulate keys:

	dhGenKey – Generate a fresh (private, public) key pair

	dhPubToBytes – Convert a public key to ScrubbedBytes

	dhBytesToPub – Convert ScrubbedBytes to a public key

	dhSecToBytes – Convert a private key to ScrubbedBytes

	dhBytesToPair – Convert ScrubbedBytes to a (private, public) key pair

The following functions are found in Crypto.Noise:

	remoteStaticKey – For handshake patterns where the remote party’s static key is transmitted, this function
can be used to retrieve it. This allows for the creation of public key-based access-control lists.

	handshakeComplete – Returns True if the handshake is complete.

	processPSKs – This function repeatedly applies PSKs to a NoiseState until the list of PSKs becomes empty
or the handshake pattern stops asking for PSKs.

	handshakeHash – Retrieves the h value associated with the conversation’s SymmetricState. This value is
intended to be used for channel binding. For example, the initiator might cryptographically sign this value
as part of some higher-level authentication scheme. See section 11.2 of the protocol for details.

	rekeySending and rekeyReceiving – Rekeys the given NoiseState according to section 11.3 of the protocol.

Supported Features

All combinations of the following handshake parameters are officially supported and covered by the unit tests:

	Patterns

	NN

	KN

	NK

	KK

	NX

	KX

	XN

	IN

	XK

	IK

	XX

	IX

	N

	K

	X

	NNpsk0

	NNpsk2

	NKpsk0

	NKpsk2

	NXpsk2

	XNpsk3

	XKpsk3

	XXpsk3

	KNpsk0

	KNpsk2

	KKpsk0

	KKpsk2

	KXpsk2

	INpsk1

	INpsk2

	IKpsk1

	IKpsk2

	IXpsk2

	Npsk0

	Kpsk0

	Xpsk1

	NK1

	NX1

	X1N

	X1K

	XK1

	X1K1

	X1X

	XX1

	X1X1

	K1N

	K1K

	KK1

	K1K1

	K1X

	KX1

	K1X1

	I1N

	I1K

	IK1

	I1K1

	I1X

	IX1

	I1X1

	Ciphers

	AESGCM

	ChaChaPoly1305

	Curves

	Curve25519

	Curve448

	Hashes

	BLAKE2b

	BLAKE2s

	SHA256

	SHA512

Vectors

Test vectors can be generated and verified using the vectors program. It accepts no arguments. When run,
it will check for the existence of vectors/cacophony.txt within the current working directory. If it is not
found, it is generated. If it is found, it is verified. All files within the vectors/ directory (regardless
of their name) are also verified. Note that this program can only generate and verify vectors whose handshake
patterns are pre-defined in this library.

Custom Handshakes

If the built-in handshake patterns are insufficient for your application, you can define your own. Note that
this should be done with care.

Example:

noiseFOOpsk0 :: HandshakePattern
noiseFOOpsk0 = handshakePattern "FOOpsk0" $
 preInitiator s *>
 preResponder s *>
 initiator (psk *> e *> es *> ss) *>
 responder (e *> ee *> se)

Handshake Validation

HandshakePatterns can be validated for compliance as described in sections 7.1 and 9.3 of the protocol:

λ> let noiseBAD = handshakePattern "BAD" $ preResponder ss *> initiator (e *> se *> e)
[DHInPreMsg (0,0),InitMultipleETokens (1,2),InitSecretNotRandom (1,3)]

λ> validateHandshakePattern noiseKKpsk0
[]

See the Crypto.Noise.Validation module for details.

Tools

format-vectors.py

Vectors generated by the vector program are formatted as minified JSON. This python script takes the path
to a vector file as an argument and reformats it so that it conforms to
the style [https://github.com/noiseprotocol/noise_wiki/wiki/Test-vectors] specified on the Noise Wiki.

noise-repl

This program acts as a kind of REPL for Noise messages. It supports sending and receiving messages via UDP
or via a pipe to a shell command.

All messages transmitted via a pipe are expected to be prepended by a two byte big-endian length.

0.11.0

	Add support for deferred patterns

0.10.1

	Set default GHC version to 8.4

	Support GHC > 8.0.2

	Parse pattern names more efficiently in unit tests

	Use preferred Curve448 module from cryptonite

	Add list of supported handshake parameters to README

0.10.0

	Completely refactored API

	Added rev32 support

	Removed examples because they are difficult to maintain

	Added noise-repl tool

0.9.2

	Added ability to export raw symmetric keys

0.9.1

	Enabled llvm flag support on executables

	Removed deepseq library dependency

	Disallowed reserved nonce (2^64 - 1)

	Fixed problem with CipherState count not incrementing

0.9.0

	Removed secondary key support (rev 31)

	Renamed dh tokens (rev 31)

	Added Noise-C vectors

	Regenerated test vectors

	Now using IsString instance of ScrubbedBytes from memory package

	Linting

0.8.0

	Exceptions are now provided by the safe-exceptions package
(breaking API change)

	Added Noise_XXfallback pattern

	Minor improvements to handshake pattern definition

	Updated non-standard handshake patterns to conform with rev 30

	Fixed bug which caused echo-server to read wrong public key

0.7.0

	Major API overhaul and refactoring

	Added test vector support

	Added secondary symmetric key support

	Added GHC 8.0.2 to unit tests

	Removed Noise_XR

	General code cleanup and other minor tweaks

0.6.0

	Added ability to abort handshakes based on the remote party’s public key

	Improved documentation

	Factored out ScrubbedBytes utilities to separate module

	Added echo-server and echo-client example

	Renamed HandshakeStateParams to HandshakeOpts

0.5.0

	Added Curve448 support

	Major refactoring and API changes
A DSL was created to represent handshake patterns.

	Added GHC 7.10.3 to unit tests

0.4.0

	Improved documentation

	Added basic benchmarks

	Added better exception handling

	Improved handshakeState API

	Added psk2 functionality

	Unit test cleanup

	Renamed symmetricHandshake to symmetricState

	Added BLAKE2, SHA512, AESGCM support

0.3.0

	Brought API up to date with current version of spec (17)

0.2.0

	Added support for one-way handshakes

	Fixed Noise_IX

	Added helper functions for ScrubbedBytes / ByteString conversion

0.1.0.0

	First version.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/language-haskell-blue.png
language haskell

_static/ajax-loader.gif

_static/comment-close.png

